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A theoretical model of heat transfer is proposed and measurements are made 
of the temperature field in a gas flow in an isothermal channel with a non- 
uniform surface. 

The author of [i] observed and studied the creation of a pressure gradient at the ends 
of a nonisothermal V-shaped tube filled with a gas. The gradient was proportional to the 
temperature difference between the ends of the tube and the site of the bend under the condi- 
tion that the channels of the system had dissimilar surfaces. The tests were conducted on 
tubes of the same diameter made of different materials in the free-molecular regime of gas 
flow. 

Analyzing this phenomenon from the viewpoint of the thermodynamics of irreversible pro- 
cesses, it is easy to conclude that there should exist an effect which is the counterpart to 
the Hobson effect. Meanwhile, both of these phenomena are probably characteristic of the en- 
tire range of Knudsen numbers. Thus, it should be expected that blowing an isothermal gas 
through the above-mentioned V-shaped tube will generate heat sources (sinks) at the bend as 
a result of the dependence of the mechanocaloric heat flow on the roughness of the surface. 
The phenomenon of the change in the temperature of a gas during its motion - often called 
thermal polarization " can be used in the diagnosis of gas flows. 

Here, we theoretically describe the thermal polarization of an isothermal gas flow in 
a nonuniform channel in a regime with slip. The conclusions we make are checked experimen- 
tally. 

We will examine the steady-state flow of a low-density (ideal) gas in a long isothermal 
tube at pressures corresponding to a viscous regime of motion with slip (Knudsen number Kn < 
0.1). Heat and mass transfer in such a system can be described by equations of continuum 
mechanics and the equation of state of an ideal gas [2]: 

divpv = O, (1) 

P (vv) v = --  grad P q- ~A v-->" (~o q- + )  grad divv, (2) 

div pv q- - - v a ' q - q  =0, (3) 

p= P hT. (4) 
m 

In traditional hydrodynamics [2], the heat flux q in Eq. (3) is assumed to be proportional 
only to VT, However, the kinetic theory of gases shows that it also contains a component 
connected with the longitudinal (along the tube axis) pressure gradient VP (the mechanocaloric 
heat flux). Thus, in accordance with [3], the heat flux should be written in the form 

where VP = (0; 0; (~P/az)). 

q ---- - -  • T -}- Lqv vP,  (5) 
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In the general case, the coefficient of mechanocaloric heat flux Lay is a function of 
the coordinates of the channel section and for small Knudsen numbers (Kn << I) is determined 
through the coefficient of thermal creep A T [3]: 

Lqo = Ar ~ �9 (6)  
P 

The tensor of the viscous stresses can be written in the form [2] 

.~,k = ~ \axk ax~ 3 a.---~) + ~ ~  ax---~ 

We further assume that the channel has the form of a circular cylinder. In this case, the 
solution of the problem is independent of the azimuthal angle ~ By virtue of the imperme- 
ability of the channel walls and axial symmetry, the velocity components are equal: v~ = 

v r = O; v z ~ v. 

Using the following familiar relation for the thermal function of ideal gases [2] 

= CpT, 

we write Eqs. (1-4) in a cylindrical coordinate system: 

( s )  

a (or) _ o, (9)  
az 

ap O2v ( i0 ) 
a--7 = (~o + n/3) a-~Tz ' 

av = _  a__PP (11) 
pv a--~ az + ~l~V -4- (~o + ~1/3) a 2 v -  

, Oz ~ ! 

' Oz ~ \ ~ = - - ~  ~o -}- az---- ~- - -  pv ~ - z  qm ~IAV2 , ( 1 2 )  

(13) 
P = P kT.  

m 

No analytical solution has been found for system (9-13) for arbitrary values of its pa- 
rameters. However, for sufficiently small Reynolds numbers Re, corresponding to small pres- 
sure gradients in the channel, Eqs. (i0) and (ii) can be replaced by the equations of motion 
for an incompressible gas. Equation (12) is simplified if we assume that the channel has 
been thermostatted and that the temperature changes caused by the gas flow have the order 
AT ~ mv2/k [2]. 

If we ignore terms of Eqs. 
write the simpler system: 

(9)-(13) which are proportional to Re(R/i); R2/L 2, we can 

a (Pv) = o, 
az 

aP 
~ 0 ~  
Or 

aP 
_ _  _--  ~Arv , 
az 

a, Lqo  . 

The t y p i c a l  bounda ry  c o n d i t i o n s  o f  t h e  p ro b l em  a r e  q u i t e  a p p a r e n t :  

(14) 

(is) 

(16) 

(17) 

av ] = o ;  aT[ =0,  (18) 
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--~ fi-~-- I , (19) V[r=R : 
ffr l r = R  

aT I = a ( T - -  TT)I~=a, (20)  
- -  x ,  Or r=R 

1 

Pl~=o = Po; Pl~=z = P~. (21)  

In contrast to [2], we did not use the assumption of incompressibility in (17). Condi- 
tion (19) allows us to consider the effect of the low density of the gas (viscous slip), 
while (20) presumes that heat transfer with the coefficient ~ takes place from the walls of 
the thermostat, which has the temperature T T. 

System (14)-(17) with boundary conditions (18)-(21) has the following solution: 

v(r, z ) = - -  (R2--rZ + 2[R) aP , (22)  
4~1 dz 

r , 2 
P (z) = (p;)~ _ [(p;)z __ (el)a] T 1-1- , (23)  

r(r, z ) = r r - -  l l ~  (R~--r~+4~R)(R~ r~) + + Lq, (24) 
n ~ Oz J [ 32. 4r ~ ~ 4g 2--~, ' 

where P'(z) : P(z) (I + 4~/R). 

In the limit Kn + 0 (24) changes into the expression 

T (r, z) = TT - -  az / 32~1x ' (25 )  

which is quite different from the temperature field in a cylindrical channel for an incom- 
pressible fluid, presented in [2]: 

(aP ~2 R~_r~ (26) 
T (r, z) = T~ + k-aT-z j 

64~x 

The r e a s o n  f o r  t h e  change  in  t h e  s i g n  o f  t h e r m a l  p o l a r i z a t i o n  in  t h e  t r a n s i t i o n  t o  a 
c o m p r e s s i b l e  gas  i s  a p p a r e n t l y  a l l o w a n c e  f o r  t h e  c o o l i n g  o f  t h e  g a s  d u r i n g  i t s  e x p a n s i o n  
a l o n g  t h e  f l o w .  

It also follows from (25) that the heat flux on the wall iz zero: 

OT] = 0, 
Or r=a 

as a result of compensation for heating effects across the channel due to viscous friction 
and cooling during expansion. This is the reason for the independence of the temperature 
field (25) of the heat-transfer coefficient. 

At finite Knudsen numbers, additional energy transport mechanisms are active and lead 
to redistribution of the temperature field. In particular, the heat flux to the wall is now 
nontrivial: 

ql,=a = - -  ~ = ~ ( T - -  Tr)ir=-n = k--~-z ] 4~ az ~ z  2 "  
Or r=a 

It is evident from (27) that this heat flow is due to slip (the first term of (27)) and the 
mechanocaloric effect [the second term of (27)]. With a finite value of ~, the given flow 
leads to a change in the temperature of the channel wall relative to the temperature of the 
thermostat. It is not hard to see that, in this case, viscous slip causes a reduction in 
wall temperature. The mechanocaloric effect can both increase and decrease wall temperature, 
depending on the form of the function Lqv = Lqv(Z). 
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Fig. i. Experimental and theoreti- 
cal relations AT = f(logKn) for he- 
lium (i) and xenon (2). logKn is 
dimensionless; AT, K. 

If Lqv changes linearly along the channel, then the maximum relative contribution of 
the third term of (24) is equal to about i0 Kn 2 and at Kn - 0.I will be about 10%. If the 
coefficient Lqv changes appreciably on a considerably shorter section of the channel (on the 
order of several channel diameters long), then the contribution of the term which accounts 
for the mechanocaloric effect may become decisive. 

To check the validity of the proposed model of thermal polarization, we performed ex- 
perimental measurements of the temperature of a gas in a channel with different pressure 
gradients. 

The experiment was conducted on a glass capillary tube with a length L = 0.15 m and a 
radius R = 1.1"10 -3 m. A local gradient Lav was created inside the tube by abrading the inside 
surface on end sections with a length equal to L/3. Temperature was measured at the points 
of the largest gradient Lqv. Specifically, it was measured at distances L/3 and 2L/3 from 
the end of the channel. The measurement was made with wire copper-constant an thermocouples. 
We studied the dependence of the pressure difference at the points where the thermocouple 
junctions were located on the pressure P0 at the tube inlet. The value of P0 was varied 
within the range 30-2000 Pa. Experimental data for helium and xenon are shown in Fig. i in 
the form AT = f(logKn). The figure also shows the theoretical relation AT = AT(logKn) in 
accordance with Eq. (24) for the tube axis. We assumed that the coefficient A T in Eq. (16) 
changed linearly over the length AL in the region of the points L/3 and 2L/3 where the rough 
section is replaced by the smooth section and vice versa. The value of A T for different chan- 
nel roughnesses and different gases was chosen in accordance with the data in [4]: 

r ~m r 
HeA~m=l,0Ar=1,125, XeA =AT=1,125. (28) 

In constructing the theoretical dependence, we made a correction for the heating of the ther- 
mocouples in a free-molecular gas flow [5]: 

A T ' =  mv-----~2 at(2--at) (29) 

where the quantity mvZ/k is the temperature gradient for the diffuse core of junction surface 
scattering, while the multiplier B = at(2 - =t)/[~n + ~t(2 - at)] corresponds to the fraction 
of atomic accomodation energy due to accomodation of tangential momentum on the surface of 
the thermocouple. 

The satisfactory agreement between the experimental data and results calculated from Eq. 
(24), evident in Fig. i, was obtained with physically realistic values of the parameters ~L = 
2.4 man; BHe = 0.36; BXe = 0.41. 

An interesting feature of the dependence of thermal polarization on the Knudsen number 
is the change in the sign of the temperature difference. This is particularly clear in the 
case of helium. The proposed model (24) links this change with the possibility that, at Kn ~ 
0.i, the mechanocaloric heat flow becomes decisive. 
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The temperature of the first thermocouple junction (in the direction of the flow) is 
higher, since the total cooling of the gas in the core of the flow is proportional to the 
square of velocity and the latter increases with a decrease in the density of the gas. With 
a reduction in pressure at the inlet, the contribution of the mechanocaloric heat flow in- 
creases. This contribution may become decisive in a channel with a rough surface for gases 
characterized by a substantial difference between the coefficients of thermal creep A T for 
smooth (ATSm) and rough (ATr) surfaces (helium, neon). Also, since the direction of the 
mechanocaloric heat flow is opposite the direction of the gas flow and AT sm < AT r, then the 
first junction will be cooled and the second heated - leading to the observed change in the 
sign of the temperature difference. 

It should be noted that by recording the temperature field of the flow and the tempera- 
ture of the channel walls, it is possible to use (24) to evaluate flow velocity, the flow 
regime, and certain other individual characteristics of gases moving in these channels. 

NOTATION 

p, density of the gas; v ,  gas velocity vector; P, gas pressure; N, ~o, shear and bulk ++ 
viscosity of the gas, respectively; m, enthalpy of a unit mass; o', tensor of the viscous 
stresses; q, heat flux; m, mass of a gas molecule; w, thermal conductivity of the gas; Lqv , 
coefficient of mechanocaloric heat flux; Cp, isobaric heat capacity of the gas; ~, heat-trans- 
fer coefficient; ~ = ok, a, coefficient of viscous slip; k, mean free path in the gas; L, R, 
length and radius of capillary tube; ATSm, ATr, coefficient of thermal creep for smooth and 
rough surfaces, respectively; Kn, Re, Knudsen and Reynolds numbers; T, TT, temperatures of 
the gas and the thermostat, respectively; r, % z, cylindrical coordinates; ~n, ~t, coeffi- 
cients of energy accomodation and tangential momentum, respectively; k, Boltzmann constant; 

I a a 

A,=TE , }. 
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